Filter by objective

Filter by sectors

Livestock management

  • Objective

    Genetic make-up influences fitness and adaptation and determines an animal’s tolerance to shocks such as temperature extremes, drought, flooding, pests and diseases. Adaptation to harsh environments includes heat tolerance and an animal’s ability to survive, grow and reproduce in the presence of poor seasonal nutrition as well as parasites and diseases. Selective breeding is a technology that aims to improve the value of animal genetic diversity. This technology can be applied to all types of livestock, including cattle, sheep, goats, alpacas and guinea pigs.

  • Sectors
    Objective

    Straw ammoniation is a process by which low-value forage such as corn stalks, rice straw, wheat straw, and straw of other crops is ammoniated. Adding liquid ammonia, urea, or ammonium bicarbonate as ammonia sources result in the straw lignin being completely degraded, while the nutrients are enhanced. It is made more easily digestible by rumen microorganisms, which increases the digestibility of forage.

  • Sectors
    Objective

    Livestock are important sources of methane. The United States Environmental Protection Agency calculated that livestock, especially ruminants such as cattle and sheep, account for approximately one-third of global anthropogenic emissions of methane (US-EPA, 2006). The methane is produced primarily through the process of enteric fermentation and released through the process of eructation (Crutzen, 1995). In addition, N2O emissions are generated by livestock through secretion of nitrogen through the urine and faeces.

  • Sectors
    Objective

    Agricultural lands (lands used for agricultural production, consisting of cropland, managed grassland and permanent crops including agro-forestry and bio-energy crops) occupy about 40- 50% of the Earth’s land surface. Agriculture accounted for an estimated emission of 5.1 to 6.1 GtCO2-eq/yr in 2005 (10-12% of total global anthropogenic emissions of greenhouse gases (GHGs)).

  • Sectors
    Objective

    Agricultural ecosystems hold large carbon reserves (IPCC, 2001a), mostly in soil organic matter.Historically, these systems have lost more than 50 Pg Carbon, but some of this carbon lost can be recovered through improved management, thereby withdrawing atmospheric CO2 (Paustian et al., 1998; Lal, 1999, 2004a).

  • Sectors
    Objective

    To optimise the synthetic or metabolic pathway of micro-organisms related to methane synthesis by employing modern molecular biotechnology to obtain genetically modified microorganisms. Then the genetically modified micro-organisms are introduced back into the rumen ecosystem to establish a relatively stable microbiota that can replace or compete with the original pathway of methanogenesis, to reduce methane synthesis in the rumen.

  • Objective

    Livestock play an important role in most small scale farming systems throughout the world. They provide traction to plow fields, manure which maintains crop productivity, and nutritious food products for human consumption. In most small scale farming systems livestock graze in pastures or woodlands feeding on grass and other herbaceous plants. During the wet season these lands provide adequate forage to maintain productive animals. In the dry season however, the quantity and quality of forage greatly decreases and is generally low in nutritional value.

  • Sectors
    Objective

    The principle of nutrition regulation technology to reduce methane emissions is: to optimise the concentrate to forage ratio in diet by controlling the crude fiber content of the diet or the fermentation process to reduce methane emission while ensuring normal production performance of ruminant animals without increasing production cost. This way, the rumen fermentation pattern or rumen microbial populations (such as methanogens, ciliates) and pH characteristics are altered to reduce methane emissions.

  • Objective

    Livestock systems in developing countries are characterised by rapid change, driven by factors such as population growth, increases in the demand for livestock products as incomes rise, and urbanisation. Climate change is adding to the considerable development challenges posed by these drivers of change. The increasing frequency of heat stress, drought and flooding events could translate into the increased spread of existing vector-borne diseases and macro-parasites, along with the emergence of new diseases and transmission models (IFAD, 2002).