Connecting countries to climate technology solutions
English Arabic Chinese (Simplified) French Russian Spanish Yoruba

Electric vehicles

Technology Type Group:

Electric vehicles are about 2.5 times more energy efficient than their counterparts which are powered solely by internal combustion engines. This high energy efficiency is the main reason why electric vehicles can contribute to lower the CO2 emission and energy consumption of traffic substantially. Electric vehicles have zero tailpipe exhaust emissions and thus contribute substantially to a better air quality. Additionally, electric vehicles are inherently silent and can help to reduce the noise levels in cities. However, the market share of electric vehicles is currently still very small and consists mainly of small vehicles intended for urban transport. Purchase costs of electric vehicles are high compared to similar sized ICE vehicles. These high purchase costs are predominantly caused by the high costs of the battery pack needed in the vehicle. Moreover a recharging network with sufficient coverage is not yet available in most countries.


Electric vehicles are propelled solely by electric motors. There are three main types of electric vehicles:

  1. Battery electric vehicles
  2. Series Hybrid vehicles (see also description of Hybrid Electric Vehicles)
  3. Hydrogen Fuel cell vehicles. (see also description of fuel cells for mobile applications)

The Battery Electric Vehicle does not have an internal generator to produce electricity, all the electricity has to be obtained from the power grid. Examples are the Citroen EVie, Mitsubishi iMiev and the Think (van Agt, 2010).

The Series Hybrid vehicle can obtain its electricity from the power grid but has additionally a small internal combustion engine which serves as a generator to recharge the battery and offers an extended driving range. The combustion engine does not directly propel the vehicle. Examples are the Opel Ampera, GM Volt and the Volvo Recharge. The third group of electric vehicles are hydrogen fuel cell vehicles. These vehicles can also obtain their electricity from the power grid but in addition, the fuel cell can serve as a generator to recharge the battery, which also extends the driving range. Examples are the Honda Clarity and the Toyota FCHV. In the following we focus on battery electric vehicles.

There are three main technical differences between a car run on an internal combustion engine and an electric car:

  1. The internal combustion engine is exchanged for an electric motor.
  2. The electric motor is powered by a controller.
  3. The controller in turn is connected to rechargeable batteries, by which it is powered.

In addition, whilst an internal combustion engines contains lots of tubes, e.g. to transport the fuel, an electric engine contains a large amount of electric wiring. (Brain, 2005).

It is technically possible to convert a gasoline-powered vehicle to an electric vehicle; however, the associated costs are relatively high. (US Department of Energy, 2010) An explanation of how this conversion works can be found here.

Feasibility of technology and operational necessities

The main barriers for a wider user of electric vehicles are related to the batteries and to the recharging infrastructure. Batteries for use in electric cars are still expensive and have relatively limited driving ranges. Most existing EV need to be recharged after a maximum of 150 to 300 km. Completely recharging the batteries may take 4 to 8 hours. (US Department of Energy, 2010b). The widespread use of electric vehicles requires an extensive recharging infrastructure. The absence of this infrastructure may lead to reluctance to buy electric vehicles due to the fear of getting stranded with empty batteries.

The main technical obstacles which hamper the introduction are how to standardize the cords and connectors used for recharging, the decision to employ an on- or off-board charger and to development of an accurate state of charge meter for the battery. (Markel, 2010).

Status of the technology and its future market potential

The market share of battery electric vehicles is still very limited and comprises mainly of small vehicles intended for urban transport (van Agt, 2010). By the end of 2012 there was over 180,000 global stock of electric vehicles and global sales more than doubled from 2011 to 2012. However, this share only account for approximately 0.02% of total passenger cars globally (IEA, 2013). 38% of this stock is concentrated in the United States with Japan accounting for 24% and China next with 6.2% of the total.

Moreover, the purchase costs for electric vehicles are still relatively high due to the high costs of the required battery pack. To lower the purchase costs of the vehicle only relatively small battery packs are installed, limiting the driving range, which makes electric vehicles currently only suitable for urban transport. Nevertheless, the technology used in electric cars is largely proven and a breakthrough can be expected when the costs and weight of the battery pack are lowered sufficiently. Contribution of the technology to economic development (including energy market support)

Depending on where a country sources its gasoline and how it produces electricity, electric vehicles may improve energy security, as they may lower the dependency on imported gasoline.

Contribution of the technology to protection of the environment

The energy efficiency of electric cars is about 2.5 times better than their fossil fuel counterparts, which is the main reason why electric cars can lower the greenhouse gas emissions of road traffic and reduce the demand for oil. The actual greenhouse gas emission associated with the use of battery electric vehicles depends largely on the way the required electricity has been produced. Employing coal fired electricity plants to generate the electricity will marginally lower the CO2 emissions of an electric vehicle compared to similar sized vehicles with an internal combustion engine. However, using renewable electricity will lower the greenhouse gas emissions considerably. Electric vehicles might even provide a way to make the electricity sector more sustainable, if the batteries in the vehicles could be used to store the variable output of wind and solar-based power generation (Nieuwenhout et al, 2009).

Electric vehicles have no tail-pipe emission of air pollutants such as NOx and soot, which means that they can substantially contribute to improving local air quality, especially in urban areas. The global improvement of the air quality however, is determined by the way the electricity used is produced, e.g. fossil fuel fired power plants can have substantial emissions of NOx and soot when no appropriate measures are taken.

Road traffic is responsible for the majority of noise in cities. Electric vehicles are very quiet and can help to reduce noise levels in cities.

In the long-term electric vehicles are important for countries seeking to decarbonise the transport sector. Figure ? below highlights the important role that the transport sector will play in a future energy system that would limit the rise in global temperatures to 2⁰C by 2050 under the IEAs “2DS” scenario. In this scenario the transport sectors potential share of CO2 reductions would be 21% by 2050. To meet this target 75% of all vehicle sales by 2050 would need to be plug-in electric.

Financial requirements and costs

The high cost of an electric vehicle over the conventional alternative is mainly determined by the costs of the lithium ion battery pack. Recent developments in lithium-ion batteries make it likely that these additional costs can be reduced from the current level of about €15,000 in prototypes to an expected level of around €3,000 in 2020. This requires the battery to be about €200-250 per kWh (Nieuwenhout et al, 2009). The 2007 prices for high energy batteries range from €800/kWh to €1000/kWh (Pesaran et al, 2009). The medium term cost goals of these batteries are €500/kWh in 2012 and €300/kWh in 2016. BYD’s first commercial electric car, the E6 model, is expected to be available for sale in the US for 40’000 USD in 2010. (People’s Daily Online, 2010)

In addition, there is a need for investment into the recharging infrastructure. This infrastructure needs to be standardized in a way that every brand of electric vehicle can recharge at every recharging station. A simple recharging point at a private house or at an office site costs about $ 1800,-. However, a public recharging station, with the necessary electronics to make contact with the bank is estimated to cost about $ 18.000,-. (Roeterdink, 2010).

Clean Development Mechanism market status

Project developers of projects deploying electric vehicles can use the following CDM methodology: AMS-III.C.: Emission reductions by electric and hybrid vehicles.


Author affiliation: Energy research Centre of the Netherlands (ECN), Policy Studies


Electric vehicles

  • Self-Healing Electrode for Lithium Ion Battery


    Stanford researchers have demonstrated for the first time a self healing electrode which can dramatically enhance the cycle lifetime of lithium ion batteries by applying Si microparticles with a thin layer of self-healing conductive composite. Cracks and damages in the electrode over the large volume changes of Si materials during lithiation and dilithiation were found to be able to self-heal automatically and thus greatly enhance the cycling stability.

  • Accumulator for Energy Storage and Delivery at Multiple Pressures


    Many of the hybrid power systems under development for use in vehicles offer a means for recapturing “wasted” vehicle energy. One of the best-known examples is the hybrid electric vehicle which couples the vehicle’s drive system to generators that store the electricity produced during deceleration in batteries. Another system with great potential is the hybrid hydraulic system which proposes an accumulator to store energy for later use. UW–Madison researchers have developed an accumulator that provides an exceedingly simple and elegant solution to the limitations of prior accumulators.

  • Reducing DC-DC Converter Loss for More Efficient Cars


    Background: DC-DC converters are used in a variety of devices to raise or lower voltage. They are used in the power systems of hybrid and electric vehicles to boost the battery’s output voltage. In these systems an upper controller continually samples and determines the motor’s target output in response to speed and the position of the accelerator pedal. For a motor outputting several tens of kilowatts sampling time (Ta) is typically every 0.1 seconds. Since efficiency is particularly important in hybrid and electric vehicles the efficiency of the DC converter is critical too.

  • Clean Vehices of Stockholm


    Clean public transport initiative

    The Clean Vehicles Poject started in the mid 90’s, originally to acquire environmentally friendly cars for the municipality. This led to the development of an infrastructure for the supply of clean vehicles and bio fuels. Since then, a considerable number of cars have been bought, tested and evaluated and the supply of clean vehicles and bio fuels has increased successively.

  • Rahii e rickshaw


    From the house of Hero Electric, India's Largest Electric Vehicle company comes Raahii E-Rickshaw. Raahii is built indigenously with a robust body that requires low maintenance. In addition to a sleek and refined look, attractive interiors, custom fittings and an exceptional finish, it can accommodate four passengers at a time. Its large wheel base and sturdy chassis makes it stable and run smoothly even on sub-standard roads.