Connecting countries to climate technology solutions
English Arabic Chinese (Simplified) French Russian Spanish Yoruba

Ammonia

Technology Type Group:
Definition:
<p>Ammonia, or azane, is a compound of nitrogen and hydrogen with the formula NH<sub>3</sub>.</p>

Ammonia is the main product of the fertilizer industry. Developing countries account for the majority of worldwide production. About 77% of ammonia production is based on steam reforming of natural gas, with most of the remaining production based on heavy-oil or coal-based processes. A further shift from heavy-oil or coal-based to gas-based processes can strongly reduce energy use and emissions.

Introduction

Ammonia is synthesized from nitrogen and hydrogen. The required nitrogen is obtained from the air and hydrogen is mostly produced from natural gas in a steam reforming process.

The International Energy Agency estimates that 77% of ammonia production is based on natural gas. Another 14%, mainly in China, is based on coal gasification. India and China also use partial oxidation of oil products and heavy hydrocarbon fractions (IEA, 2007). Gas-based processes are the most energy efficient. Heavy-oil processes typically use 1.3 times as much energy and coal based processes even 1.7 times as much (IEA, 2007). Replacing old ammonia production capacity by new natural gas-based steam reforming processes can therefore strongly improve energy efficiency and reduce greenhouse gas emissions.

Feasibility of technology and operational necessities

Gas-based technologies are widely used in all regions of the world. The technology is supplied by a limited number of companies and new plants tend to operate at comparable energy efficiency. The most energy efficient technology available is the auto-thermal reforming process, which combines partial oxidation and steam reforming technology and uses about 28 GJ/ton (IPCC, 2007).

A requirement for the use of gas-based technology is the availability of natural gas at a competitive price.

Status of the technology and its future market potential

Almost all nitrogen fertilisers are based on ammonia. Production has been on the rise in developing countries which have a high fertiliser demand. In 1974, developing countries accounted for only 27 % of ammonia production capacity. By 1998 this share had increased to 51% (IPPC, 2007).

Global ammonia production was 125 million tonnes in 2008 with China being the world’s largest ammonia producer (IFA, 2010). In China, about 70% of ammonia is derived from coal, 10% from oil products and 20% from natural gas. Coal-based processes are used in small-scale and medium sized plants.

India is the second largest ammonia producer. About two-thirds of production capacity there is based on natural gas. The remainder uses naphtha and fuel oil. Gas-based plants in India use on average 36,5 GJ/ton ammonia.

Mainly because of the differences in the type of feedstock, large differences exist between the energy intensity of ammonia production in different regions of the world (Table 1). But at gas-based plants many different energy efficiency improvement measures are also possible (IPPC, 2007).

Table 1: Energy intensity of ammonia production in 2005 (IEA, 2007)
Region Energy intensity (GJ/t NH3) Region Energy intensity (GJ/t NH3)

Western Europe

35.0

Other Asia

37.0

North America

37.9

Latin America

36.0

Commonwealth of Independent States

39.9

Africa

36.0

Central European countries

43.6

Middle East

36.0

China

48.8

Oceania

36.0

India

43.3

World

41.6

How the technology could contribute to socio-economic development and environmental protection

The International Energy Agency estimates that in 2004, total energy and feedstock use for ammonia production amounted to 4,3 Exajoules of natural gas, 0,6 Exajoules of oil and 1,2 Exajoules of coal. Ammonia production is therefore responsible for about 20% of all energy consumption in the chemical industry.

Environmental benefits of switching to gas-based processes are reduced emission of CO2 and improved energy efficiency. But there may be an adverse effect on energy security when oil and coal are more readily available than natural gas.

A steady supply of affordable fertilizers is essential for the development of agriculture. Modernizing or replacing older and less efficient plants can help fertiliser industries to stay competitive. However, new ammonia plants require large capital investments.

Financial requirements and costs

Prices of fuels vary from country to country. but generally speaking, natural gas costs make up 70-90% of the ammonia production costs (IEA, 2007). Whether higher gas prices result in higher ammonia prices depends on the global supply situation, so the choice of fuel can have an important impact on the profitability of the industry. A fuel switch is a fundamental process change, which requires large investments. However, modernizing or replacing older and less efficient plants can be profitable investment decisions in the long term. (IEA, 2007)

References

  • International Energy Agency (2006), Energy Technology Perspectives 2006, Scenario’s & Strategies to 2050, OECD/IEA, Paris, 2006.
  • International Energy Agency (2007), Tracking industrial energy efficiency and CO2 emissions, OECD/IEA, Paris, 2007. [1]
  • International Fertilizer Industry Association. [2]
  • IPPC (2007), Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals- Ammonia, Acids and Fertilisers, Integrated Pollution Prevention and Control, 2007. [3]

Author affiliation

Energy research Centre of the Netherlands (ECN), Policy Studies

Collection:

Ammonia

  • High Rate of Microbial Production of N2O for Energy Generation

    Type: 
    Product
    Technology:

    Stanford researchers have developed a method for converting ammonia in wastewater into nitrogen gas while simultaneously generating power in a bioreactor system. This method produces energy from carbon and nitrogen waste and provides significant cost and energy savings over current options.

  • Hydrogen Release from Thermolysis of Ammonia Borane

    Type: 
    Product
    Technology:

    Hydrogen is a clean and environmentally-friendly energy carrier. A major obstacle for the development of hydrogen powered vehicles is the lack of safe light weight and energy efficient means for on-board hydrogen storage. Ammonia borane (AB) is a promising hydrogen storage material for vehicles powered by fuel cells. A fuel cell is a device that converts the chemical energy from a fuel into electricity. Hydrogen is released from AB via thermal decomposition; however this process produces excessive heat and unfavorable byproducts.

  • Supported NI-M Materials for Electrooxidation of Hydrazine

    Type: 
    Product
    Technology:

    Nickel and its intermetallics/alloys with other metals are well known materials for electrooxidation of hydrazine. Nickel is unique element that has an electronic structure that allows it to behave as “noble” element for example to be active in the reaction of electrooxidation of different fuels. However in fuel cell operations unsupported nickel based materials possess a number of disadvantages in electrooxidation of hydrazine. The main drawbacks are low catalytic surface utilization small amount of active sites and high rate of ammonia production.

  • Photoelectrocatalytic Oxidation Removal of Ammonia for Aquaculture Systems

    Type: 
    Product
    Technology:

    Aquaculture involves the farming of organisms in water. Aquaculture systems that produce aquatic organisms year round in a closed controlled environment require significantly fewer land and water resources than open systems like pond net-pen and flow-through culture systems. Closed recirculating aquacultures also yield minimal effluent discharge which decreases contamination of nearby areas. These characteristics allow for construction and operation almost anywhere including within cities and close to major markets.

  • Nitrogen-Selective Membrane for Carbon Capture

    Type: 
    Product

    This patented dense catalytic membrane is designed to retrofit existing pulverized coal power plants for large-scale postcombustion carbon capture. The technology takes advantage of the nitrogen (N2) driving force and high temperatures of flue gas to effectively remove N2 and isolate CO2 for transport and storage. Compared to the current amine scrubbing techniques (e.g. MEA-based systems) of a similar scale the proposed membrane approach would have lower capital costs and land requirements with decreased parasitic power loads.

  • Gas Sensor for Ammonia Carbon Dioxide and Water

    Type: 
    Product
    Technology:

    Researchers from Prof. Ronald Hanson’s laboratory have developed a sensitive patented gas sensor that uses diode lasers to simultaneously detect ammonia carbon dioxide and water vapor. This sensor is particularly useful for measuring trace amounts (ppm levels) of ammonia without interference from typical background species. Compared to previous gas detection instruments this technology is rapid versatile and inexpensive.

  • High Rate of Microbial Production of Nitrous Oxide for Energy Generation

    Type: 
    Product
    Technology:

    A method for converting ammonia in wastewater into nitrogen gas while simultaneously generating power in a bioreactor system. This method produces energy from carbon and nitrogen waste and provides significant cost and energy savings over current options. Using bacteria in carefully controlled aerobic and anoxic reaction phases the organisms in the bioreactor convert ammonia into nitrite in a first stage at an extremely low dissolved oxygen level and subsequently convert nitrite into nitrous oxide gas in a second anoxic stage through either biotic or abiotic mechanisms.

  • Non-toxic Low Cost Nitrogen Fixation by Titanium Dioxide

    Type: 
    Product
    Technology:

    Dr. Glenn Miller within the University of Nevada Reno Department of Natural Resources and Environmental Science (NRES) focuses on the transport and transformation of organic and inorganic compounds. Dr. Miller’s lab has a long-term interest in the environmental photochemistry of organic compounds and recently is focusing on the photolysis of pesticides on soil surfaces and in the gas phase. They are also working on a variety of projects related to contamination from mining sites both from current precious metals mining sites and historic mines.

  • Ion Exchanged Pillared Clays for Selective Catalytic Reduction of Nitric Oxide

    Type: 
    Product
    Technology:

    This technology is capable of selectively reducing nitrogen oxides (NOx) potent greenhouse gases that are produced during combustion of fossil fuels. The catalyst by employing pillared interlayered clay structures more efficiently reduces nitrogen oxides and is more compatible with sulfur-containing fuels than the vanadia based commercial catalysts currently available. Nitrogen oxides are produced during the combustion of fossil fuels and emitted in the resulting exhaust gas streams. They are potent greenhouse gases and considered a toxic pollutant.