
By: Silvano Pozzi
Date: June - 2018
There is a problem…Urban air pollution has major effects on health.

Air pollution costs European economies €1.5 trillion a year in diseases and deaths.

Air pollution dangerously high for almost half of U.S., report finds.

CBS News
Where does the pollution come from in the US?

Fossil fuel burning transportation is a major contributor. It is responsible for 27% of greenhouse gas emissions in the US. US EPA, 2014
Where does the pollution come from in EU?

Fossil fuel burning transportation is a major contributor. It is responsible for 21% of greenhouse gas emissions.
There a quest for solution…There is a political will to make changes.

- COP21 agreement
- Diesel vehicles are being banned in Europe
- Introduction of low emission zones in cities
- Commitment from transit agencies to move to 100% ZEB by 2025 or 2030
There is a target... Clean transit is required to meet emission reduction targets.

- Public transit takes cars off the road
- Major mover of people in dense urban areas
- Zero-emission public transit is a reality today with electric buses
- Public transit impacts disadvantaged communities
There is a solution…Fuel cell electric buses provide an operable and affordable zero-emission solution for public transit.
Zero-emission electric buses are a reality.

- Electric powertrains are mature
- Growing worldwide commercial deployments
- Efficient drive
- Benefited from progress in battery technology
- Low noise and passenger comfort
Hydrogen fuel cell buses are electric buses integrate-able to any existing infrastructure.

- Same electric drivetrain as battery electric buses
- Battery-fuel cell hybrid configuration
- Fuel cell module is on-board battery charger
- Most OEMs offer common platform for their zero-emission buses
Fuel cells enhance the performance of electric buses.

- Longer range (400 km plus)
- No compromise on passenger load
- Fast refilling (less than 10 min)
- Recyclable
- Improve vehicle efficiency by using heat from the fuel cells
Fuel cells enhance the performance of electric buses.

• Improve vehicle efficiency and battery lifetime
Transit buses should transport passengers.

- Passengers represent 1/3rd of bus gross weight
- Longer range can be achieved with more batteries (up to 650kWh of batteries for 450km)
- But it increases bus weight up to 2,000kg
- Fuel cell buses are lighter and can provide a longer range with a full passenger load
Fuel cell electric buses can replace diesel buses without significant changes to operational requirements.

- No need to adapt routes and schedule
- Better asset management
- No roadside infrastructure
- 1:1 replacement of conventional buses
Fuel cell electric buses are affordable.

- Bus cost has dropped by 100% since 2010
- Funding and incentives are available to bridge price gap with conventional buses
- Higher fuel economy than conventional buses
- Attractive operating cost
EU Case - Fuel cell electric bus cost reduction driven by:

- Optimization of electric bus platform
- Hybridization of fuel cell with battery
- Reduction of fuel cell module size from >200kW to less than 100kW
- Integration and fuel cell system cost reduction with volume production

Fuel Cell Electric Bus Cost
(12 m bus in Euro)
US Case - Fuel cell electric bus cost reduction driven by:

- Optimization of electric bus platform
- Hybridization of fuel cell with battery
- Reduction of fuel cell module size from >200kW to less than 100kW
- Integration and fuel cell system cost reduction with volume production
- FCEB will be within $50k of BEB by 2020+

Source: New Flyer
China Case - Major gains being achieved even with modest scaling.
Driving volume by simultaneously creating demand for trucks and buses.
Starting a new energy revolution.

• Bus demand stimulates hydrogen production projects
• Hydrogen allows a different route to get low carbon energy into our cities
• Hydrogen can solve problems of energy supply and grid instability
• Hydrogen fuel cell bus deployments open the road for trucks and rail applications
Hydrogen provides scalability for large bus depots.

- Hydrogen infrastructure is fully scalable
- 1 bus = 30 kg of H₂ per day
- 20 buses = 600kg/day
- 75 bus station with 2x 4.5t storage of liquid H₂ will have a footprint of 400m² (4,300ft²)
Years of road experience with performance equivalent to conventional buses.
Product Flexibility and Scalability

FCveloCity® fuel cell module for heavy-duty vehicles

• Zero-emission solid state power module
• Flexible platform from 30kW to 200kW
• Safe (built-in safety features)
• Quality tested
• Durable (25,000hrs stack life in service)
• Fuel efficient
Committed to sustainable mobility, and clean air for everyone.