Background: Climate changes have made agriculture a difficult proposition for small farmers in rain-fed and marginal lands while available arable land is decreasing every year. Agricultural crops and vegetables that can thrive in conditions of drought high salinity high-temperature or heavy metal contamination will go a long way in addressing the world’s food needs. Technology Description: Dr. Parkash has pioneered his original and novel idea to engineer transgenic rice plants for strong resistance to and decreased uptake of arsenic and heavy metals in order to reduce the movement of toxins in the food chain as well as producing plants that can thrive in harsh conditions. Rice is an important staple food of 80% of the world’s human population and rice straw is used as livestock feed. Arsenic is a potent carcinogen and affects the health of more than 500 million people worldwide. Applications: 1) Increased Safety of Food Supplies 2) Plants grown in heavy metal-contaminated soil accumulate high levels of these pollutants which then enter the food chain through ingestion of contaminated grain by humans and animals. Decreasing the uptake of toxins by rice plants and other crops will improve the safety of food for direct human consumption as well as the safety of meat and dairy products. 3) Scientists at universities and major food corporations have developed transgenic plants with properties that enhance productivity quality or nutrition. Dr. Parkash also expects to engineer plants resistant to multiple abiotic stresses such as drought high salinity high temperature and heavy metals. This is accomplished by isolating and characterizing a new family of Stress-Associated Proteins containing zinc-finger domains. By over-expressing genes from this family transgenic plants gain strong tolerance to various environmental stress as well as metals such as arsenic cadmium nickel manganese and zinc.
Rapid Sensitive and Selective Sensors for Ionic Mercury
CTCN Keyword Matches
Technology
Further information
Content organisation
Date of release