Connecting countries to climate technology solutions
English Arabic Chinese (Simplified) French Russian Spanish Yoruba

Enteric fermentation

Enteric fermentation is a digestive process by which carbohydrates are broken down by microorganisms into simple molecules for absorption into the bloodstream of an animal.

Enteric fermentation

  • High Rate of Microbial Production of N2O for Energy Generation

    Type: 
    Product
    Technology:

    Stanford researchers have developed a method for converting ammonia in wastewater into nitrogen gas while simultaneously generating power in a bioreactor system. This method produces energy from carbon and nitrogen waste and provides significant cost and energy savings over current options.

  • Viresco Solutions

    Type: 
    Organisation
    Knowledge partner
    Country of registration:
    Canada
    Relation to CTCN:
    Network Member
    Knowledge Partner

    Viresco Solutions is a consulting firm based in Calgary, Alberta, Canada. Its core business is greenhouse gas offset policy development and implementation, greenhouse gas emissions quantification, sustainable supply chain development, environmental offset methodology development, and providing technical assistance to others undertaking carbon offset project development. Its clients include industry and non-governmental associations, large private sector companies, and local, provincial and federal governments.

  • Fertiliser, manure and straw management (rice)

    Type: 
    Technology
    Sectors:
    Objective:

    Fertiliser and manure management in rice fields are important methane mitigation technologies. The fertiliser management mitigation option includes changes in: fertiliser types; fertiliser nutrient ratios; the rates and timing of applications; and use of nitrification inhibitors to reduce methane emissions by affecting methanogenesis in rice fields. Rice cultivation is responsible for 10% of GHG emissions from agriculture. In developing countries, the share of rice in GHG emissions from agriculture is even higher, e.g., it was 16% in 1994.

  • Livestock management

    Type: 
    Technology
    Sectors:
    Objective:

    Livestock are important sources of methane. The United States Environmental Protection Agency calculated that livestock, especially ruminants such as cattle and sheep, account for approximately one-third of global anthropogenic emissions of methane (US-EPA, 2006). The methane is produced primarily through the process of enteric fermentation and released through the process of eructation (Crutzen, 1995). In addition, N2O emissions are generated by livestock through secretion of nitrogen through the urine and faeces.

  • Household biogas

    Type: 
    Technology
    Sectors:
    Objective:

    Biogas is a flammable gas produced by organic materials after it has been decomposed and fermented by anaerobic bacteria in tightly sealed environmental digesters under certain temperature, humidity, acidity and alkalinity conditions. The process in which biogas bacteria decompose organic materials to produce biogas is known as biogas fermentation. Manure-based biogas digesters refer to fermentation tanks which are used to treat animal manure including human waste via anaerobic fermentation.

  • Livestock feed optimisation

    Type: 
    Technology
    Sectors:
    Objective:

    The principle of nutrition regulation technology to reduce methane emissions is: to optimise the concentrate to forage ratio in diet by controlling the crude fiber content of the diet or the fermentation process to reduce methane emission while ensuring normal production performance of ruminant animals without increasing production cost. This way, the rumen fermentation pattern or rumen microbial populations (such as methanogens, ciliates) and pH characteristics are altered to reduce methane emissions.

  • Integrated solid waste management

    Type: 
    Technology
    Sectors:
    Objective:

    Integrated solid waste management (ISWM) can be defined in different ways, but it refers to the strategic approach to sustainable management of solid wastes covering all sources and all aspects such as waste generation, segregation, transfer, sorting, treatment, recovery and disposal in an integrated manner, with an emphasis on maximizing resource use efficiency. A plausible solution to waste management would be an integrated approach which would include collective management of all types of wastes and implementation of the 3R (Reduce, Reuse and Recycle) policies and strategies

  • Landfill aeration

    Type: 
    Technology
    Sectors:
    Objective:

    Many developed and developing countries practice composting and anaerobic digestion of mixed waste or biodegradable waste fractions (kitchen or restaurant wastes, garden waste, sewage sludge). Both processes are best applied to source-separated waste fractions. While composting is often appropriate for dry feedstocks, anaerobic digestion is particularly appropriate for wet wastes.

  • Landfill composting

    Type: 
    Technology
    Sectors:
    Objective:

    Many developed and developing countries practice composting and anaerobic digestion of mixed waste or biodegradable waste fractions (kitchen or restaurant wastes, garden waste, sewage sludge). Both processes are best applied to source-separated waste fractions. While composting is often appropriate for dry feedstocks, anaerobic digestion is particularly appropriate for wet wastes.