Connecting countries to climate technology solutions
English Arabic Chinese (Simplified) French Russian Spanish Yoruba

Denmark

Official Name:
Kingdom of Denmark

National Designated Entity

Type of organisation:
Government/Ministry
Name:
Mr. Hans Jakob Eriksen
Position:
Special Advisor
Phone:
+45 3392 2800, +45 4172 9078

Energy profile

Type: 
Energy profile
Energy profile
Extent of network

As in most countries, the electricity grid was built after the Second World War and designed for central generation, which was characteristic of the energy system. As a consequence, Denmark’s transmission network operator has experienced problems to balance its grid and several times the system was close to a breakdown (Jensen 2002). This is why the expansion and transformation of the grid is one of the main topics of the Danish electricity agenda. Denmark is a pioneering country when it comes to implementing and testing new network concepts. The transmission operator Energinet.dk is currently implementing the cell concept, shifting more responsibilities for network control to the distribution networks and enabling islanding of individual cells.

Renewable energy potential

SolarOver the last few years, large solar installations for district heating have been established in a number of locations in Denmark. The contribution from solar energy is expected to be 16 ktoe by 2020 as opposed to 10 ktoe in 2005 (0.4 PJ in 2005, 0.7 in 2020)Wind EnergyDenmark is one of the most aggressive countries in the world for wind power and has a relatively long history using it. Since 1988 Denmark has built nearly 3,400 MW of wind capacity. Currently, wind power provides about 20% of Denmark’s electricity through more than 5,200 wind turbines, and this is an increase from 2% in 1990. The vast majority of this wind turbine-generated electricity is onshore, but as available land is becoming scarce, an increasing number of wind turbines are found in offshore wind farms.According to the Danish Energy Agency, this aggressive approach to wind power has reduced the country’s dependence on fossil fuels and has made Denmark one of the largest European energy technology exporters. Their data show that since 1980 Danish GDP (Gross Domestic Product) has increased by 78%, their energy consumption has remained flat, and their CO2 emissions have decreased by more than most any other European country.Denmark’s goal is to meet 50% of its electricity needs with wind energy by 2025, including a near doubling of their wind power capacity to 6,000 MW. They are also investing in the infrastructure to support electric cars, so that wind power will be powering some of their transportation needs.Biomass and BiogasIn 2010, solid biomass and biogas contributed 3,400 GWh to gross renewable electricity production, representing 26% of total gross renewable electricity production. All of this electricity was generated in the form of CHP. Biomass‐fuelled CHP plants have been a common part of the Danish electricity and district heating supply for decades. There are over 200 district heating plants and 15 CHP plants fuelled by solid biomass and 30 biogas‐fired CHP plants.Biomass consumption (wood and straw) in the Danish electricity sector is divided between both power stations and local CHP plants. Around two‐thirds of the straw and wood is consumed by power stations, while one‐third is fired at the 15 or so small local biomass plants. Some 147 local CHP plants – with a combined capacity of 80 MW – use biogas as a fuel.  In 2010, power generation from biofuels totalled 3,068 GWh. It has remained relatively stable from one year to the next, but biofuels‐based power generating capacity has been increasing in Denmark in recent years.Denmark is a leader in terms of energy produced from waste, followed by Switzerland and far ahead of IEA third‐ and fourth‐placed Sweden and Austria. In terms of consumption, 91% of waste is used in CHP plants and the remaining part in heat‐only plants. In 2009, nearly half of solid biomass supply was used for heating purposes in the residential sector, 29% in CHP plants, and 17% in heat-producing plants.HydroHydropower makes a very small contribution to renewable electricity supply. Denmark has 38 small‐scale hydroelectric power plants, which in 2009 generated a total of 19,795 MWh. The largest plant, Tangeværket at Gudenåen, has an installed capacity of 3.9 MW.

Energy framework

Energy Strategy 2050: From Coal, Oil, and Gas to Green EnergyThe hallmark of Denmark’s energy policy is independence from fossil fuels. In fact, the Danish Government’s February 2011 Energy Plan, called “Energy Strategy 2050: From Coal, Oil, and Gas to Green Energy”, states this overall goal in its title. The plan states its main goal is independence from coal, oil, and gas by 2050, which in turn will result in Denmark maintaining a secure stable supply of affordable energy and helping to limit global climate change. In addition, achieving this goal will provide economic opportunities for Danish green energy technologies within its own borders as well as in the global market, and will minimize Denmark competing for a shrinking supply of fossil fuel supplies, many of which are in unstable countries.In March 2012 a new political agreement on energy was reached in Denmark. This Energy Agreement is an important step towards fulfilling the 2050 target. 95% of the members of Parliament -i.e. all parties but one- stand behind this Agreement. The Agreement contains a wide range of ambitious initiatives, bringing Denmark a good step closer to the target of 100% renewable energy in 2050. The Agreement covers the period 2012 – 2020.National Renewable Energy Action PlanIn 2020, the Danish Renewable Energy Action Plan expects almost 52% of total electricity consumption to be met by renewables. Almost 60% of this will be wind, with biomass, essentially, making up the rest.The NREAP thus indicates that Denmark is on track to meet and, indeed, exceed its 30% RES target by 0.4 percentage points. In the long term, Danish plans are for 100% renewables. The document indicates that the excess RES is available for use in co-operation mechanisms with other Member States. Denmark’s action plan focuses to a large extent on managing consumption, and only a very slight increase in electricity demand is expected between 2010 and 2020. Moreover, the plan indicates that future policies aim to reduce energy consumption in 2020 by 4% compared to 2006.The Agreement lists a large number of actions to be taken during the period 2012 – 2020. These actions will result in more than 35% renewable energy in final energy consumption in 2020. As the Agreement does not go beyond 2020, it does not lay out in detail the path from 2020 to 2050, which will lead to 100% renewable energy in 2050. The Agreement includes 62 actions covering the following areas: energy efficiency, renewable energy for electricity production, district heating, combined heat and power production, use of renewable energy in households and industries, smart grids, biogas production, use of electricity and renewable energy for transport, research, development and demonstration and finally financing of the Agreement.Feed-in tariff (see below section “regulatory framework”)

Source
Static Source:
  • Type: 
    Publication
    Publication date:
    Objective:
    Sectors:

    The goal of this report is to provide an understanding of global non-ferrous metal scrap flows in the context of non-ferrous industry developments over the 2000 to 2011 period. The focus of this study is on copper and aluminium as the two largest non-ferrous metals in terms of both material tonnages and market value. The report consists of four chapters. The first chapter, presented here, provides a brief backdrop to the analysis on non-ferrous scrap flows. It outlines growth in metal demand and the underlying reasons for this growth.

  • Type: 
    Publication
    Publication date:
    Objective:
    Sectors:

    This report provides historical and projected estimates of emissions of non-carbon-dioxide greenhouse gas (GHG) emissions from anthropogenic sources. It provides a consistent and comprehensive estimate for 92 individual countries and 8 regions. The analysis provides information that can be used to understand national contributions of GHG emissions, historical progress on reductions and mitigation opportunities. Although this document is being published by the U.S.

  • Type: 
    Publication
    Publication date:
    Objective:
    Sectors:

    Representing one-fifth of total global CO2 emissions currently, industrial sectors such as cement, iron and steel, chemicals and refining are expected to emit even more CO2 over the coming decades. Carbon capture and storage (CCS) is currently the only large-scale mitigation option available to cut the emissions intensity of production by over 50 per cent in these sectors. To achieve decarbonisation goals, policymakers must pay more attention to industrial applications of CCS, while not undermining the global competitiveness of these sectors.

  • Type: 
    Publication
    Publication date:
    Objective:
    Sectors:

    This tool is designed to provide policymakers and interested individuals and groups with overviews of policy tools and approaches to improving fleet-wide automobile fuel efficiency and promote lower carbon dioxide (CO2) and non-CO2 emissions from cars, along with case studies that depict these approaches from developed and developing countries.

  • Type: 
    Publication
    Publication date:
    Objective:

    Freely available climate and climate-related data is essential to catalyze the changes in policies, investments and technologies that will be needed if we are to move towards a climate-smart future. The Climate Change Knowledge Portal is a central hub of information, data and reports about climate change around the world. With this portal you can query, map, compare, chart and summarize key climate and climate-related information. Open data: all of the climate data featured on the Climate Change Knowledge Portal has been published as open data resources.

  • Type: 
    Publication
    Publication date:
    Objective:

    This report sets out to assess the scientific validity of what it calls the WWF's 'doomsday prophecy', as outlined in the NGO's Living Planet Report 2002. The Danish authors argue that WWF has produced one in a long line of articles, stretching back to Malthus' essay on the principle of population, that predict disaster as a result of human demand on natural resources outstripping supply.The paper outlines the concept of the ecological footprint, one which has developed out of the commonly used carrying capacity measure of sustainable use of natural resources.

  • Type: 
    Organisation
    Country of registration:
    Germany
    Relation to CTCN:
    Network Member

    Wuppertal Institute for Climate, Environment and Energy  is a research and academic organization established in 1991 with the mission to undertake research and develops models, strategies and instruments for transitions to a sustainable development at local, national and international level. Sustainability research at the Wuppertal Institute focuses on the resources, climate and energy related challenges and their relation to economy and society. Special emphasis is put on analysing and stimulating innovations that decouple economic growth and wealth from natural resource use. 

  • Type: 
    Organisation
    Country of registration:
    Netherlands
    Relation to CTCN:
    Network Member
    Sector(s) of expertise:

    Vereniging FME-CWM is a public sector organization with the mission to promote collaboration, knowledge exchange and promotion of Dutch products internationally. Their demonstrated expertise lies in deployment of renewable energy technologies such as solar and wind as well as energy storage in different regions of the world. 

  • Type: 
    Organisation
    Knowledge partner
    Country of registration:
    Denmark
    Relation to CTCN:
    Network Member
    Knowledge Partner
    Sector(s) of expertise:

    Quercus is an advisory type of an institution established in 2012 with the mission to positively improve and optimize living conditions for people and the working climate for public and private enterprise in the face of globalization. Quercus Group works with regional economic development in three main areas: Cluster Development, Network and Partnership facilitation, Investment and export promotion. 

     

  • Type: 
    Publication
    Publication date:
    Objective:
    Sectors:

    Under the umbrella of the Cement Sustainability Initiative (CSI) of the World Business Council for Sustainable Development (WBCSD), a number of leading cement companies are collaborating on monitoring and reporting greenhouse gas (GHG) emissions. One of these issues is the industry"s emissions of carbon dioxide (CO2), the main GHG contributing to man-made global warming. This revised Version 3 of the Cement CO2 and Energy Protocol is published in May 2011 and is intended to be applied for reporting of data starting in the year 2011.