Connecting countries to climate technology solutions
English Arabic Chinese (Simplified) French Russian Spanish Yoruba

The Netherlands Organisation for Applied Scientific Research

Country of registration:
Acronym:
TNO
Relation to CTCN:
Consortium Partner
Knowledge Partner
CTCN Keyword Matches:
Sector(s) of expertise

TNO is an independent research organisation which connects people and knowledge to create innovations that boost the competitive strength of industry and the well-being of society in a sustainable way. This is our mission and it is what drives us, the over 3,400 professionals at TNO, in our work every day. We work in collaboration with partners and focus on nine domains.

Organisation name (local):
Energieonderzoek Centrum Nederland
Acronym (local):
TNO
Active in:
Worldwide

Contributions

  • Fuel cells for mobile applications

    Type: 
    Technology
    Sectors:
    Objective:

    Fuel cells are used to produce electricity. They are considered a promising technology to replace conventional combustion engines in vehicles. Fuel cells may also replace batteries in portable electronic equipment. The most widely used types of fuel cells for mobile devices are Proton Exchange Membrane fuel cells (PEM FC) which are often used in vehicles, and Direct Methanol fuel cells, used in portable applications. PEM fuel cells use hydrogen or certain alcohols such as methanol as fuel.

  • Biodiesel

    Type: 
    Technology
    Sectors:
    Objective:

    Liquid biofuels for transport, including biodiesel, have to a certain extent been in use for a very long time. In recent years however, they are enjoying renewed interest in both developed and developing countries as a result of the need to curb rising emissions from the transport sector, reduce dependence on expensive fossil oil imports and increase farm incomes.

  • Plug in Hybrid Electric Vehicles

    Type: 
    Technology
    Sectors:
    Objective:

    A plug in hybrid electric vehicle (PHEV) is a hybrid electric vehicle with the ability to recharge its energy storage with electricity from an off-board power source such as a grid. PHEVs have the potential to displace a significant amount of fuel in the next 10 to 20 years. It is estimated that they can reduce fuel consumption by up to 45% relative to that of a comparable combustion engine vehicle.

  • Liquefied Natural Gas in trucks and cars

    Type: 
    Technology
    Sectors:
    Objective:

    The use of Liquefied Natural Gas (LNG) in transport is a suitable option to power large long-distance trucks in areas where gas is transported as liquefied natural gas because there are indigenous gas supplies and no gas network. The use of LNG in passenger cars is far less viable because on average passenger cars stand idle more often, which would give rise to high evaporative losses.

  • Modal shift in freight transport

    Type: 
    Technology
    Sectors:
    Objective:

    The modal split for freight transport varies greatly by region, and is largely determined by geographical and economic factors. However there is a common trend towards more use of road transport, at the expense of rail and water transport. The latter modes have a substantially better environmental profile, but are limited by longer delivery times and the necessity of pre- and post-haulage by truck, i.e. inter-modal transport. In the logistic chain used nowadays, there are small local stocks and fast on demand delivery is required.

  • Optimising aviation

    Type: 
    Technology
    Sectors:
    Objective:

    Improved air traffic management techniques like to avoid flying holding patterns, “green landings” and the use of relatively low speed airplanes for domestic aviation can reduce the emission of greenhouse gases substantially. Depending on their penetration up to 3% CO2 emission reduction can be achieved for green landings and 10-60% CO2 emission reduction for low speed airplanes. Moreover, these techniques will lower the NOx and soot emissions, thereby improving the air quality around the airport.

  • Promotion of non-motorised transport

    Type: 
    Technology
    Sectors:
    Objective:

    Non-motorised transport (NMT) is often a key element of successfully encouraging clean urban transport. It can be a very attractive mode of transport for relatively short distances, which make up the largest share of trips in cities. The key to reversing the trend towards more private vehicle use is making walking and cycling attractive, together with improving public transport. This can be done by a range of activities including construction of sidewalks and bike lanes, bike sharing programmes, urban planning and pedestrian-oriented development.

  • Hybrid electric vehicles

    Type: 
    Technology
    Sectors:
    Objective:

    One approach to lowering the CO2 emission from traffic is the hybridization of vehicles. A hybrid vehicle uses two or more distinct power sources, i.e. hybrid electric vehicles (HEVs) combine an internal combustion engine and one or more electric motors. Vehicles employed in urban areas like small passenger cars, local delivery trucks and city busses benefit from hybridization and show substantially lower CO2 emissions, ranging from 23 to 43% depending on the traffic dynamics.

  • Introduction to Climate Technologies for Mitigation: The role of climate technologies in reducing greenhouse gas emissions across sectors

    Type: 
    Webinar
    Date and time:
    Wednesday, April 8, 2015 - Wednesday, April 8, 2015 Europe/Copenhagen

    What can climate technologies do across all sectors to reduce greenhouse gas emissions that cause climate change?  Welcome to our fifth webinar in our new series. Join our CTCN Consortium Partner Energy research Centre of the Netherlands (ECN) for this introductory webinar on climate technologies for mitigation.