AWD suitability mapping methodology*

The Alternate Wetting and Drying (AWD) practice has been proved to be an innovative practice in rice cultivation that significantly reduces 30% of total water use and 48% of total CH4 emissions without impacting rice yield (Richards and Sander, 2014). To support AWD out-scaling, the methodology for AWD suitability analysis developed has been developed by Nelson et al. (2015) and Sander et al. (2017). This suitability analysis mainly based on soil and climatic factors and specific conditions in rice production regions. The process of AWD suitability analysis is as follows:

1. Water balance analysis: developing a rice extent and calculating the dekadal water balance for each area of the rice region based on dekadal rainfall, potential evapotranspiration, and potential soil percolation rate;
2. Dekadal AWD suitability analysis: calculating AWD dekadal suitable score to determine when field water is deficit or surplus;
3. Seasonal AWD suitability analysis: calculating the AWD seasonal suitable score and categorized into three classes corresponding to three seasonal suitability levels: high suitability, moderate suitability, and low suitability.

In Vietnam, the government has prioritized AWD as an option for NDC implementation in the agricultural sector. To support national and local AWD implementation plan, the AWD suitability analysis methodology has been adapted for rice production condition of Vietnam.

The seasonal AWD suitability maps were first developed for national level and then down-scaled to provincial level. An Giang province was selected as a case study and the bio-physical AWD suitability maps were first developed for the province in 2018. Based on these maps, the staffs of An Giang province’s Department of Agriculture and Rural Development were engaged to analyze local situation and adoption capacity, and identify (socio-economic) barriers that obstruct large scale adoption of AWD at its districts. Based on this participatory work, the bio-physical suitability and socio-economic adoption capacity have been integrated to develop the overall AWD suitability maps of the province. The outputs were validated by local officials, and considered as scientific reference for AWD scaling strategy in rice production of the province.

To support the bio-physical suitability analysis, IRRI has developed computer-based tool, namely Mapping suitability of the Alternate Wetting and Drying practice in rice production (MapAWD).

MapAWD tool development

The MapAWD is a Microsoft® Excel-based tool. The tool only requires simple input data (e.g. rice extent, cropping season, rainfall, potential evapotranspiration and soil percolation rates) and can in principle be applied to all rice growing areas. The original method has been improved by integrating climate-risks and unfavorable soil information in its analysis process.

The tool also integrates a GIS component to present the spatial distribution of suitability levels in the studied area. The tool uses the map of rice extent in raster format as a base map for all analysis steps.

*Description of the AWD suitability mapping methodology taken from a manuscript that is in the editing process.
System requirements

The MapAWD tool can operate in the following environment:

- Operation system: Windows XP, Windows 7 and later versions
- Microsoft Excel 2003 or later
- Disk space requirement: 7 Mb
- Memory requirement: 128 Mb RAM

Components of MapAWD

The core of MapAWD is an Excel workbook with programing codes written using Visual Basic for Application (VBA) language. MapAWD includes components for input and output data. The structure of MapAWD is described in the table below:

<table>
<thead>
<tr>
<th>MapAWD components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>...\MapAWD \Inputs</td>
<td>Working folder</td>
</tr>
<tr>
<td>Crop.txt</td>
<td>Input folder contains required biophysical data for suitability analysis and mapping.</td>
</tr>
<tr>
<td>Land.txt</td>
<td>Input data is in tabular format (climate and land use data) and the base map is in ESRI ASCII format (*.asc)</td>
</tr>
<tr>
<td>PET.txt</td>
<td></td>
</tr>
<tr>
<td>Rainfall.txt</td>
<td></td>
</tr>
<tr>
<td>BaseMap.asc</td>
<td></td>
</tr>
<tr>
<td>\Outputs</td>
<td>Output folder</td>
</tr>
<tr>
<td>MapAWD v1.0.xls</td>
<td>MapAWD program and interface</td>
</tr>
<tr>
<td>MapAWD_Users_manual.doc</td>
<td>Users’ manual</td>
</tr>
</tbody>
</table>

VBA code for AWD suitability analysis

Workbook

Private Sub Workbook_Open()

ThisWorkbook.Sheets(1).Range("WorkDir").Value = ThisWorkbook.Path & \\
"\"

End Sub

Sheet GeneralInfo

Private Sub Worksheet_Activate()

Me.Range("WorkDir").Value = ThisWorkbook.Path

End Sub

Modul AWD
Option Explicit
Public StrVal As Variant, iTmp As Long
Public WorkDir As String
Public LandFile As String
Public CropFile As String
Public RainFile As String
Public PetFile As String
Public SuitFile As String
Public SuitMap As String

Public Type GridHeader
 nCols As Long ' number of columns in grid map
 nRows As Long ' number of rows in grid map
 xllcorner As Double
 yllcorner As Double
 CellSize As Single
 Nodata As Integer
 Count As Double
 'MinX As Double, MaxX As Double, MinY As Double, MaxY As Double
End Type
Public Type GridMap ' Store spatial variables
 Header As GridHeader
 Data() As Variant
End Type
Public DefaultGridHeader As GridHeader
Const BarWidth = 275 '.Shapes("StatusBar").Width
Sub SuitabilityAnalysis()
 Dim BaseMap As GridMap
 Dim AWDMAP() As GridMap

 '--
 Dim ColNo As Long, RowNo As Long
 Dim nSeason As Integer ' number of crop seasons per year
 Dim RainData As Variant ' Rainfall data
 Dim Percolation As Variant ' Percolation data
 Dim PetData As Variant ' Potential evapo-transpiration data
 Dim WB As Single ' water balance = rainfall - PET - Percolation
 Dim AWDScore As Boolean ' AWD suitability
 Dim TotalScore As Integer ' Total score
 Dim ScoreThresholds(3) As Single
 Dim RiskDur(1, 1) As Integer '(Climate risk duration, dekad (0 = saline, 1 = flood))
 Dim RiskSaline As Integer, RiskFlood As Integer, RiskSoil As Integer
 Dim PlantD() As Integer ' Planting dekad (season)
 Dim HarvestD(2) As Integer ' harvesting dekad (season)
 Dim nDekad(2) As Integer ' number of dekad in a season (season)
 Dim Irr As Single ' Irrigation water (mm)
 Dim StrLine As String
 Dim StrVal As Variant
 Dim StrOut As String
 Dim iCount As Integer
 Dim jCount As Double
 Dim s As Integer ' season
 Dim d As Integer ' dekad
 Dim BarRatio As Integer

 '--
 nSeason = 3
 ReDim PlantD(nSeason - 1)

 With ThisWorkbook.Sheets(1)
 WorkDir = .Range("WorkDir").Value
 CropFile = WorkDir & "\input\" & .Range("CropFile").Value
 LandFile = WorkDir & "\input\" & .Range("LandFile").Value
 RainFile = WorkDir & "\input\" & .Range("RainFile").Value
 PetFile = WorkDir & "\input\" & .Range("PETFile").Value
 RiskDur(0, 0) = .Range("SalineStart").Value: RiskDur(0, 1) = .Range("SalineEnd").Value
 RiskDur(1, 0) = .Range("FloodStart").Value: RiskDur(1, 1) = .Range("FloodEnd").Value
 SuitFile = WorkDir & "\output\" & ThisWorkbook.Sheets(1).Range("OutputFile").Value
 SuitMap = ThisWorkbook.Sheets(1).Range("OutputMap").Value
With ThisWorkbook.Sheets(2)
 DefaultGridHeader.CellSize = .Range("CellSize").Value
 DefaultGridHeader.nCols = .Range("nCols").Value
 DefaultGridHeader.nRows = .Range("nRows").Value
 DefaultGridHeader.xllcorner = .Range("xllcorner").Value
 DefaultGridHeader.yllcorner = .Range("yllcorner").Value
 DefaultGridHeader.Nodata = .Range("NoData").Value
 DefaultGridHeader.Count = .Range("nCells").Value
End With

ReDim AWDMap(nSeason - 1)
For s = 0 To nSeason - 1
 AWDMap(s).Header = DefaultGridHeader
 ReDim AWDMap(s).Data(DefaultGridHeader.nCols, DefaultGridHeader.nRows)
 "Season " & s + 1, GridHeader, FloatDataType, -9999, InRam
Next s

With ThisWorkbook
 ScoreThresholds(1) = .Sheets(1).Range("upper1").Value
 ScoreThresholds(2) = .Sheets(1).Range("upper2").Value
 ScoreThresholds(3) = .Sheets(1).Range("upper3").Value
 updateStatus "Processing... Please wait...", 0
End With

'-----------------------
Open LandFile For Input As #1
Open RainFile For Input As #2
Open PetFile For Input As #3
Open CropFile For Input As #4
Open SuitFile For Output As #5

'startTime = Timer()
jCount = 0
Do Until EOF(1) = True
 DoEvents
 StrVal = 0: ColNo = 0: RowNo = 0: Percolation = 0
 RainData = 0: PetData = 0

 Line Input #1, StrLine ' open land data
 StrVal = Split(StrLine, ",")
 ColNo = Val(StrVal(1))
 RowNo = Val(StrVal(2))
 Percolation = Val(StrVal(5))
RiskSoil = Val(StrVal(8)) ' Acid sulphate soil
RiskSaline = Val(StrVal(6)) ' Saline affected land
RiskFlood = Val(StrVal(7)) ' flood affected land
jCount = jCount + 1
If Int(jCount / DefaultGridHeader.Count * 100) > BarRatio Then
 BarRatio = Int(jCount / DefaultGridHeader.Count * 100)
 updateStatus "Processing..." & BarRatio & ",%", BarRatio
End If
Line Input #2, StrLine ' open rainfall data
 RainData = Split(StrLine, ",")
Line Input #3, StrLine ' open PET data
 PetData = Split(StrLine, ",")
Line Input #4, StrLine ' open crop data
If IsNumeric(PetData(0)) = False Then GoTo SkipLine
StrVal = Split(StrLine, ",")
For s = 0 To nSeason - 1
 nDekad(s) = 0: TotalScore = 0: AWDMap(s).Data(ColNo, RowNo) = 0
 PlantD(s) = StrVal(s * 2 + 1)
 HarvestD(s) = StrVal(s * 2 + 2)
 'Calculate crop duration, ndekad
 If PlantD(s) = 0 Or HarvestD(s) = 0 Then
 nDekad(s) = 0
 ElseIf PlantD(s) > HarvestD(s) Then
 nDekad(s) = 37 - PlantD(s) + HarvestD(s) + 1
 ElseIf PlantD(s) < HarvestD(s) Then
 nDekad(s) = HarvestD(s) - PlantD(s) + 1
 Else
 nDekad(s) = 0
 End If

 'Calculate water balance (WB)
 If nDekad(s) = 0 Then AWDMap(s).Data(ColNo, RowNo) = -2: GoTo SkipSeason
 iCount = 0
 For d = 3 To nDekad(s) - 1 ' ignore 2 first dekads and the last dekad.
 'Check unapplication cases
 If RiskSoil = 1 Then 'Acid sulphate soil
 AWDMap(s).Data(ColNo, RowNo) = -1: GoTo SkipSeason
 ElseIf RiskSaline = 1 Then 'Saline affected land
 If d >= RiskDur(0, 0) And d <= RiskDur(0, 1) Then
 AWDScore = False: GoTo SkipDekad
 End If
 ElseIf RiskFlood = 1 Then 'Flood affected land
 If d >= RiskDur(1, 0) And d <= RiskDur(1, 1) Then
 AWDScore = False: GoTo SkipDekad
 End If
 End If
 Next d
End For
AWDScore = False: GoTo SkipDekad
End If
End If

WB = 0: AWDScore = 0
if PlantD(s) + d <= 37 Then
 If Val(RainData(PlantD(s) + d)) >= 5 Then Irr = 0 Else Irr = 5 -
 Val(RainData(PlantD(s) + d)) ' if rain water >=5mm then no need to
 irrigate
 WB = Val(RainData(PlantD(s) + d)) + Irr - Val(PetData(PlantD(s) + d))
 - Val(Percolation)
Else
 If Val(RainData(PlantD(s) + d - 37 + 1)) >= 5 Then Irr = 0 Else Irr = 5 -
 Val(RainData(PlantD(s) + d - 37 + 1)) ' if rain water >=5mm then no
 need to irrigate
 WB = Val(RainData(PlantD(s) + d - 37 + 1)) + Irr -
 Val(PetData(PlantD(s) + d - 37 + 1)) - Val(Percolation)
End If
If WB < 0 Then AWDScore = True Else AWDScore = False
SkipDekad:
 TotalScore = TotalScore + Abs(AWDScore)
iCount = iCount + 1
Next d
'Calculate AWD suitability
Select Case TotalScore / iCount ' ignore 2 first dekads and the last dekad.
 Case 0: AWDMap(s).Data(ColNo, RowNo) = 0 ' no suitable
 Case Is <= ScoreThresholds(1): AWDMap(s).Data(ColNo, RowNo) = 1 ' low suitable
 Case Is <= ScoreThresholds(2): AWDMap(s).Data(ColNo, RowNo) = 2 ' medium
suitable
 Case Else: AWDMap(s).Data(ColNo, RowNo) = 3 ' high suitable
End Select
SkipSeason:
 If s = 0 Then
 StrOut = AWDMap(s).Data(ColNo, RowNo)
 Else
 StrOut = StrOut & "," & AWDMap(s).Data(ColNo, RowNo)
 End If
Next s
Print #5, Val(PetData(0)) & "," & ColNo & "," & RowNo & "," & StrOut
SkipLine:
Loop
Close #1: Close #2: Close #3: Close #4: Close #5
If ThisWorkbook.Sheets(1).Range("opt_OutputMap") = "Yes" Then
If ThisWorkbook.Sheets(1).Range("outputMap").Value <> "" Then
 For s = 0 To nSeason - 1
 updateStatus "Writing outputs for season " & s + 1, 100
 ExportAsc s, AWDMap(s) ' Write asc format of AWD map
 Next s
End If
End If
'Erase AWDMap
MsgBox "Process completed", vbOKOnly + vbInformation, "Done!"
updateStatus "Ready!", 0
End Sub

Sub ExportAsc(ByVal s As Long, ByVal ascMap As GridMap)
 Dim iTmp As Long
 Dim i As Integer, j As Integer
 Dim iFile As Integer
 Dim OutMapFile As String
 iFile = FreeFile
 OutMapFile = WorkDir & "\output\" & "Season_" & (s + 1) & "_" & SuitMap
 Open OutMapFile For Output As #iFile
 With ascMap.Header
 Print #1, "ncols" & Space(11) & .nCols
 Print #1, "nrows" & Space(11) & .nRows
 Print #1, "xllcorner" & Space(11) & .xllcorner
 Print #1, "yllcorner" & Space(11) & .yllcorner
 Print #1, "CellSize" & Space(11) & .CellSize
 Print #1, "NODATA_value" & Space(11) & .Nodata
 End With
 iTmp = 0
 DoEvents
 For j = 1 To .nRows ' Y
 DoEvents
 For i = 1 To .nCols ' X
 If IsEmpty(ascMap.Data(i, j)) Then ascMap.Data(i, j) = .Nodata
 If i < .nCols Then
 Print #1, ascMap.Data(i, j);
 Else
 Print #1, ascMap.Data(i, j)
 End If
 Next
 Next
End Sub
Sub OpenBaseMap()

 Dim PreviousName As String
 Dim InMapFile As String
 Dim iFile As Integer
 Dim iCount As Double

 PreviousName = ThisWorkbook.Sheets(1).Range("BaseMap").Value

 ChDir ThisWorkbook.Path
 InMapFile = Application.GetOpenFileName("ESRI ASCII raster format(*.asc), *.asc", 1, "Open base map for reference")
 If InMapFile <> "False" Then
 ThisWorkbook.Sheets(1).Range("BaseMap").Value = InMapFile

 '-------ReadAscMap InMapFile
 iFile = FreeFile
 Open InMapFile For Input As #iFile
 updateStatus "Reading basemap....please wait!", 0
 With ThisWorkbook.Sheets(2)
 For iCount = 1 To 6
 Line Input #iFile, StrVal ' Read Arc Map description
 Select Case iCount
 Case 1: .Range("nCols") = Val(Mid(StrVal, InStr(1, StrVal, " "), 100))
 Case 2: .Range("nRows") = Val(Mid(StrVal, InStr(1, StrVal, " "), 100))
 Case 3: .Range("xllcorner") = Val(Mid(StrVal, InStr(1, StrVal, " "), 100))
 Case 4: .Range("yllcorner") = Val(Mid(StrVal, InStr(1, StrVal, " "), 100))
 Case 5: .Range("CellSize") = Val(Mid(StrVal, InStr(1, StrVal, " "), 100))
 Case 6: .Range("NoData") = Val(Mid(StrVal, InStr(1, StrVal, " "), 100))
 End Select
 Next
 iCount = 0
 Do Until EOF(iFile) = True
 DoEvents
 Line Input #iFile, StrVal
 iCount = iCount + .Range("nCols") - (Len(StrVal) - Len(Replace(StrVal, .Range("NoData"), ""))) / Len(.Range("NoData"))
 updateStatus "Reading base map..." & iCount, 100
 Loop
 .Range("nCells") = iCount

 End Sub
End With
Close #iFile
'--------
Else
 ThisWorkbook.Sheets(1).Range("BaseMap").Value = PreviousName
End If

InMapFile = Empty

updateStatus "Ready!", 0

End Sub

Sub GetWorkingDirectory()
 Dim PreviousName As String
 Dim fldr As FileDialog
 Dim sItem As String
 PreviousName = ThisWorkbook.Sheets(1).Range("WorkDir").Value
 Set fldr = Application.FileDialog(msoFileDialogFolderPicker)
 With fldr
 .Title = "Select a Folder"
 .AllowMultiSelect = False
 .InitialFileName = ThisWorkbook.Path 'Application.DefaultFilePath
 If .Show <> -1 Then
 sItem = PreviousName
 GoTo NextCode
 Else
 sItem = .SelectedItems(1)
 End If
 NextCode:
 ThisWorkbook.Sheets(1).Range("WorkDir").Value = sItem
 Set fldr = Nothing
 End With
End Sub

Public Function GetFileList(ByVal FileExt As String, ByVal iFolder As String) As String()
 Dim FSO As Object, iFile As Object
 Dim FSOSource As Object
 Dim iArray() As String
 Dim i As Integer
 If Dir(LCase(iFolder)) = "" Then GoTo ReadingError
 Set FSO = CreateObject("Scripting.FileSystemObject")
 Set FSOSource = FSO.GetFolder(iFolder)
 i = 0
 For Each iFile In FSOSource.Files
If LCase(Mid(iFile.Name, InStr(1, iFile.Name, ".", vbTextCompare) + 1, Len(iFile.Name))) = LCase(FileExt) Then
 ReDim Preserve iArray(i)
 iArray(i) = Mid(iFile.Name, 1, InStr(1, iFile.Name, ".", vbTextCompare) - 1)
 i = i + 1
End If
Next
GetFileList = iArray
Erase iArray
Exit Function
End Function
Sub updateStatus(Text As String, Ratio As Integer)
 ThisWorkbook.Sheets(1).Range("Status").Value = Text
 ThisWorkbook.Sheets(1).Shapes("StatusBar").Width = Ratio / 100 * BarWidth
End Sub