Connecting countries to climate technology solutions
English Arabic Chinese (Simplified) French Russian Spanish Yoruba

Fuel Cells Using Low-Temperature Conducting Materials

Researchers at the University of California Davis have developed a novel method to fabricate nanometric oxides that exhibit enhanced conductivity by a different mechanism. Conduction in these materials (e.g. cubic zirconia and other materials with similar properties) takes place by protonic movement as opposed to ionic mobility making it possible to operate a fuel cell at much lower temperatures. The marked reduction of the resistivity in these materials at low temperatures are comparable to that typical of other protonic conductors but with the advantage of superior mechanical properties chemical stabilities and the lack of need for a catalyst. Applications: Manufacturers of oxide fuel cells and those involved in hydrogen separation.


This method is advantageous in fuel cell technology due to operating at much lower temperatures (i.e. 50 - 100°C) resulting in economic benefits since many of the existing problems in these types of fuel cells originate from the deleterious effects of high temperature on electrodes and related components.

Date of release: